
Two-extended Toda fields in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 5693

(http://iopscience.iop.org/0305-4470/27/16/032)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Malh. Gen. 27 (1994) 5693-5704. Printed tn the UK 

Two-extended Toda fields in three dimensions 
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Abstract. Two-extended Toda fields associated with Saveliev-Vershik’s continuum Lie 
algebras are studied. Such fields satisfy three-dimensional (integro-)differential equations. 
Structures such as the fundamental Poisson relation. classical Yang-Baxler equation. chiral 
exchange algebra and dressing vansformalions are recovered. which are in complete analogy 
to the two-dimensional case. The formal solution is also considered using Lomov-Saveliev 
analysis, but fhis d e s  not lead to explicit solutions because we have insufficient knowledge 
about the highest-weight representations of the continuum Lie algebras. 

1. Introduction 

Two-dimensional integrable field theories have proved to be very fruitful over the last 
twenty years. Among such models, Toda field theories have received particular attentions 
because they are related to most of the important subjects of modem theoretical physics. 
For example, conformal Toda models have played an important role in the investigation of 
extended conformal algebras (W algebras) and W gravities; their affine and conformal affine 
analogues were shown to be interesting models as solitonic equations, and also as prototypes 
of critical-off-critical conformal field theories. Also, the quantum Toda field theories are 
among the important quantum integrable field theories which admit the beautiful quantum 
group symmetries and/or factorizable S-matrices. Besides, the study of Toda field theories 
really helps to establish and understand the systematic methods for treating two-dimensional 
integrable systems. 

Recently, accompanying the investigation of the so-called W-infinity (W-, Wl- and 
w,) algebras, there arose a wide interest in studying a certain kind of three-dimensional 
integrable model, especially the well known KP hierarchy and the ‘continuous limit’ of 
Toda theories [1-6]. The latter, being reIated to w, algebra [1-3] and real Euclidean 
self-dual Einstein gravity [7] and possessing physically non-trivial instanton solutions [4], 
has been studied by numerous authors from various view points. However, as far as we 
know, the study of three-dimensional Toda model has not been put forward to the same 
extent as in the two-dimensional case. One of the still open question is whether, in the 
three-dimensional case, there exist structures like the ‘fundamental Poisson relation’ in the 
sense of the St Petersburg (formerly Leningrad) group [gl, or whether one can treat the 
three-dimensional integrable models using the Hamiltonian techniques developed for two- 
dimensional integrable models. 

It seems to us that it may be too ambitious to answer the last question at the present 
stage because we have not even made clear enough what we mean by the term ‘integrability’ 

* Mailing address. 

0305.4470~4/165693+12$l9.50 @ 1994 IOP Publishing Ltd 5693 



5694 Liu Chao et a1 

in three-dimensions, In the two-dimensional case, a system of nonlinear partial differential 
equations is said to be integrable if it can be represented by the ‘zero-curvature’ equation 

[a+ - A + .  a- - A- ]  = o 
where the potentials As are usually Lie algebra valued. This definition of integrability is 
certainly different from the classical concept of the Liouville integrability. It is sometimes 
referred to as the Lax integrability because the ‘zero-curvature’ equation is just the 
compatibility condition of the Lax pair a*T = A+T, and it has been proved that the Lax 
integrability is reduced to the Liouville integrability for two-dimensional systems if and only 
if the L a x  operator A1 = $(A+ - A - )  possesses a classical r-matrix structure 191. However, 
for the three-dimensional case, even Lie algebra valued Lax potentials A* are hard to find 
for most systems. So, whenever we are speaking of integrable threedimensional models, 
we are talking about those models which are solved exactly in some way. Therefore, we 
seem to be a very long way from establishing a systematic approach for three-dimensional 
integrable field theories. 

Fortunately, due to the development of the concept of contragradient continuum 
Lie algebras by Saveliev and Vershik [SI, one is now able to establish the Lax pair 
representations for a number of three-dimensional models. The simplest example is just 
the three-dimensional Toda model mentioned above. Although the continuum Lie algebra 
valued Lax pair representation for the three-dimensional Toda model looks rather formal 
at first sight, it seems to us that this is precisely the right way to generalize the theories 
of two-dimensional integrability to the case of three dimensions. In this article, we shall 
study three-dimensional generalization of the two-extended Toda model proposed by us 
some time earlier [IO]. We shall try to generalize many of the concepts and methods of 
two-dimensional integrable models to the three-dimensional case based on this model. As 
a by-product, we point out that the model under consideration should correspond to a new 
type of W-infinity algebra, and may probably be denoted by tug). The calculation of the 
explicit structure of this algebra is planned for the future. 

2. Review of continuum Lie algebras 

Before constructing the three-dimensional two-extended Toda model, let us first give a brief 
review of the continuum Lie algebras. Due to Saveliev and Vershik [5]. the contragradient 
continuum Lie algebra B ( E ,  IC, S) is defined as the quotient algebra B‘(E, K, S ) / J ,  where 
E is a vector space over some field 6,  K and S are bilinear mappings E x E + E ,  and 
8’ is the Lie algebra freely generated by the ‘local part’ 8’ 8-1 d 80 0 8+1 through the 
relations 

[XO(V)> XO(*l)l = 0 
[XO(d, &(@)I = ~ X * I ( m J o ,  $)) 
[X+I (V) ,  X-I($J)l = XO(S((P, *N 

where p, @ E E ,  and J is the largest homogeneous ideal having a trivial intersection with 
GO. For the above relations to really define a Lie-algebra structure, the mappings K and S 
have to be subjected to additional constraints. As a special case, one can choose E to be 
a commutative associative algebra with the multipication e, and K: and S to have a linear 
form, say, 

a(% f) = K(V)  f .vV, @) = S((0 11). 
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In these cases one can further choose S = id, which corresponds to the so-called standard 
form [SI. In this article, we are particularly interested in the standard contragradient 
continuum Lie algebras with E being the algebra of Cm functions on some one-dimensional 
manifold M with the local coordinate t .  In such cases, one can replace the generating 
relations by the following relations between the ‘kernel generators’ 

where K ( f , t ’ )  is called the Cartan operator, or, to be exact, the kernel of the Catan 
operator K (we shall use the term Cartan operator for both K ( t ,  t’) and K, with some 
abuse of terminology) and 

In general, the Cartan operator may be an integral operator possessing a continuous spectrum 
(in contrast to the Kac-Moody algebra in which the Cartan matrix possesses a ‘discrete 
spectrum’, namely its eigenvalues), and it may or may not be symmetrizable ( K ( t ,  t’) is 
symtr i zab le  ifthere exists afunction ~ ( t )  such that Q(r, f’) = K ( t ,  t’)u(t’) = K(t‘, t)u(t) .  
The operator Q(t, t’) is called the symmetrized Cartan operator). In this article, we shall 
always assume that the Cartan operator is symmetrizable. As a concrete example, we 
can choose K ( t ,  t’) = a$(t - r’ ) ,  which is itself symmetric under t f+ t’ (and this algebra 
corresponds to the continuous limit of the Lie algebra Am). As we shall see in the following 
context, the two-extended Toda model corresponding to this last special choice of K is 
actually a generalization of the three-dimensional Toda model of [14,7]. Other choices of 
K can also give threedimensional generalizations of the two-extended Toda model, but the 
corresponding equations often appear as integro-differential equations. 

The general structure theory for the contragradient continuum Lie algebras is not yet 
established. Nevertheless, it is enough for us to know that the Killing form can be 
appropriately defined according to concrete choices of K and S, and by definition, the 
contragradient continuum Lie algebras are naturally 2-graded. In the case of S = id with 
a symmetrizable Cartan operator K ( t ,  t’), the Killing form can be defined as 

(h(t ) ,  h(t‘)) = K ( t ,  f’)u(f‘) = Q(t, t’) 

In particular, if K ( t ,  t‘) = a,%(t - t‘), the function u(t)  can be chosen to be the constant 1, 
and it was shown in [6] that there exist highest-weight representations for the corresponding 
Lie algebra B(CmM, K, id), with the highest-weight state denoted by Is). These materials 
are all that is needed for our constructions. 

(et@), e-( t ‘ ) )  = u(t)d(t - t’). 

3. Two-extended Toda model in three dimensions 

With the above mathematical preparation given, let us now go on to the central subject of 
this articl-the two-extended Toda model in three dimensions. 

The two-dimensional case of this model is studied by us in a series of papers [IO, 111, in 
which the W-algebra symmehies, fundamental Poisson relation, chiral exchange algebras, 
general solution and the Wronskian-type special solution in relation to the WzNW reduction 
and classical W-surfaces are made clear. The crucial difference between the two-extended 
Toda model and the standard one lies in that, in the standard case, the Lax connections A* 
take their respective values in the subspaces GO @ @*I) of the underlying Lie algebra G 
(where @*’) denote the ith graded sector of the Lie algebra G), whilst for the two-extended 
model, these connections take values in the subspaces Go 63 @*I) @ E(**). I t  is precisely 
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this difference that makes the two-dimensional twc-extended Toda model have the extended 
conformal symmetry algebra W[G,  H, 21, in contrast to the standard W [ G ,  H, 11 symmetry 
algebra for the usual Toda model (we are using the convention of Ill],  where the symbol 
W [ A N ,  principal gradation, 11 corresponds to the usual WN+I algebra). 

Let us be more concrete. The Lax pair of the two-extended Toda model can be written 
as 

a i T = A * T  Aa =iC[[ la*@+exp(~[ ladQ)Y*+exp(~iad@)p*]  (1) 
where, in the two-dimensional case, the fields Q take values in the Cartan subalgebra of 
the Kac-Moody algebra G, @* lie in @*I), and p* are constant, regular, representative 
elements of gci2), respectively. 

Now in order to generalize this model to the three-dimensional case, we require that the 
fields e, Y* and the constants p+ be continuum Lie algebra valued. That means that the 
above quantities can be rewritten in the form 

@(I+, x - )  dt h(t)p(x+. x - ,  t )  s 
pa = iCf  dt dt' Q(t ,  t ' ) [ek(t) .  e&')] s 

With these definitions in mind, we are now ready to write the equations of motion 
for the two-extended Toda model. This can be done by first calculating the compatibility 
condition of the Lax pair, which gives the result 

a+&@ -k [exp(ad@)@-, @+I + [exp(ad@)p-, ptI = 0 

a-Qt = exp(adQ)$- 
a+*- = exp(-ad@)@+ (4) 

and then substituting the definitions (2). (3) into (4). It finally follows that 

a,a-w+, X - ,  t )  

- I d t i  df;!Q(tl,t)Q(t2,t)KOi.t)K(q,t)rl-(xt,x-, td@t(xt,x-,tz)B(t) 

+ d t i Q 2 ( t i , t ) K ( t i , t ) 8 ( t i ) % ( t ) = 0  

(5) 

s s s 
at@-(+ I X- I 0 = dh Q@I, Wt ( x + ,  x - ,  h)K(ti, Og(t) 

a-$+ ( x + ,  x-  , t )  = dtl w r l ,  t w ( x + ,  x-,  t l ) ~ ( t l l  t )s( t )  

where the explicit dependence of B on x+ is omitted for the sake of brevity of notations, 

B(t)  = exp (- SdiK(7 ,  t)p(x+, x-,  ?j (6) 
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At first glance, the system (5) of integro-differential equations appears to be rather 
complicated. If, however, the Cartan operator K ( f ,  1’) and (correspondingly) the function 
Q ( t ,  t‘) are chosen appropriately, the three-dimensional two-extended Toda model can be 
rewritten in a very neat form. For example, if we choose the underlying contragradient 
continuum Lie algebra to be B(CwM, a;&(r-t’), id) and let Q ( t ,  t’) = t-f’, equation (5) 
can be rewritten as 

a+a-V - 4a,+-a,*+exp(-a;yt)+ zexp(-za:q) = o 

a-@+ = za,@-exp(-a,?~) 
a+@- = za,@+exp(-a:v) (7) 

which is exactly an extension of the ‘three-dimensional Toda model’ studied by several 
authors. 

The reason for the above system being of interest to study is that, firstly, this system of 
equations is really a continuous limit of the two-dimensional A, two-extended Toda model, 
just as the usual three-dimensional Toda model, 

8,a-p + exp(-a;p) = o 
is the continuous limit of the two-dimensional A, Toda model. Secondly, as a direct 
extension of the threedimensional Toda model, this system is expected to possess many 
extended characteristics of the three-dimensional Toda model, such as a generalized w, 
symmetry, extended self-dual Einstein spaces, etc. Actually, the two-extended Toda 
model with the underlying Lie algebra A, was suggested [lo] to possess a conformal 
symmetry algebra already in the two-dimensional case; it can be denoted Wg), which is 
the generalization to the case of the integer-half-integer conformal spectrum of the usual 
nonlinear W, algebra, or the large-N limit of the W?) algebra. The conformal algebras 
with integer-half-integer spectra were referred to as the ‘bosonic superconformal algebra’ by 
Fuchs [I21 and by us. Using this terminology, the algebra Wg’ may be called the ‘bosonic 
super W-infinity’ algebra. The wg algebra is supposed to be a linear variant of WE’, just 
as w, is a linear variant of W,. However, the explicit structure of the algebras W:) and 
wg)  is still difficult to construct. The central difficulty is that, in the two-extended case, it 
is not as easy as in the usual case to choose a complete set of chiral conserved quantities 
as a good basis. Nevertheless, there should be no problem connected with the existence of 
such bosonic superconformal algebras. We hope the difficulty in choosing a basis for such 
algebras could be overcome in the future. 

It might be of interest to note that the system (7) really admits physically interesting 
solutions. For example, the instanton-like solution 

** = g*(xd 

explicitly solves equation (7). where f* and gf are arbitrary functions of the arguments 
x*.  To obtain more solutions of the system, we have to generalize the techniques for 
solving two-dimensional Toda-type models. However, in the present section, we would 
rather introduce the effective action for the three-dimensional two-extended Toda model 
and leave the task of generalizing the techniques for solving two-dimensional Toda-type 
models to the next section. 
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The effective action for the system (4),(5) reads [lo] 

I ( @ ,  q+) = 4 dr,dr-(a+@a-o + G+a-q+ + G-atq-) 

(8) 

s 
-4 drtdx- (exp(-ad@)(@,)*- + exp(-ad@)(fi+)fi-} 

= j d r t  dr- dt V ( I )  ia,pm(a-p) + (w(+,)a-++ + vmww- 
-2(KQ)(*+)(KSl)(+-)E + (KQZ)(E)E} (9) 

where 

( W f )  = / dti K(ti t ) f ( f i )  

( K W f )  = j d l  K(tl , t )n(I l , f ) f ( t l )  

s 
(KQ2)(f)  = j d f l  K ( ~ I , ~ ) Q ~ ( I I .  t ) f ( t l ) .  

In the particular case of the B(CmM, a,?S(t - f'), id) model with Q ( t ,  f') = f - 1', the 
above action can be rewritten as 

I W ,  = dr+dx- (a+pa-a:p+za,++a-++ +za,+-a,+- 
(10) 

Note that the last action is of fourth-order in derivatives of field q. Such an action does 
not describe a three-dimensional relativistic field theory in the usual sense. Actually, the 
extra dimension t is an algebraical dimension which has different meaning in contrast to 
the other two space-time dimensions. 

Since we are not experienced in treating fourth-order actions, we now prefer to define 
the canonical Poisson brackets for the original form (8) of the action. Remembering that the 
fields @, Y* are just continuum Lie algebra valued No-dimensional fields, and the action 
(8) for these fields is of second order, we can define the Poisson bracket for these fields in 
the usual way. That means that we can define the canonical conjugate momenta n,, nv, 

-sa,+,.a&- exp(-a:p) + ~exp(-2$p)]. 

as 

Remembering the definitions (1 1) of the fields no, l l ~ ,  and requiring the Poisson bracket 
for the component fields p, +* to be consistent with those defined above, we find that the 
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Poisson bracket for the fields q, @* may be appropriately defined as 

(13) 
1: f ( Q ) ( a o q ) ( x , ,  f ) ,  d x i ,  f ‘ ) }  = &(XI - x:)so - t‘) 

( f ( l C ~ 2 ) ( ~ * i ) ( x l , t ) , ~ i ( x ; , t ’ , )  =6(x1 - x ; ) s ( t  - f ‘ ) .  
These Poisson brackets are exactly what will arise if we treat directly the action (9) and 
define the Poisson brackets in the usual way. Therefore, in spite of the different meaning 
of the variable f ,  the Poisson brackets can be defined safely using the usual method. 

4. Fundamental Poisson relation and classical Yang-Baxter equation 

As mentioned in the last section, the Hamiltonian method of treating higherdimensional 
(d > 2) integrable systems is still lacking, such as the fundamental Poisson structure and 
classical r-matrices. For some particular examples, such as the self-dual Yang-Mills theory 
(where the Lax-type linear systems were found for a long time by the use of the prolongation 
method [131), the classical r-matrix has been found by Chau et al [I41 using the J-field 
formulation. However, up to now, there is very little knowledge about whether there may 
be a fundamental Poisson relation for the transport matrices since the transport matrix 
depends on all four space-time variables, and the Poisson bracket for such matrices cannot 
be obtained easily by integrating those for the potentials in the linear systems. 

Fortunately, in the three-dimensional Toda-type models, the ‘transport operator’ T does 
not depend on the third variable t ,  and thus we can get the Poisson bracket for T by directly 
integrating the Poisson bracket for the Lax connections. 

y(A+ - A-). 
By direct calculation, we have 

(Ai(xi)@, AI(X;)] = 4 

I Let us first calculate the Poisson bracket {AI(XI)@, At(x;)t with AI 

dtdt‘K(f,t’)R(#, t’)E”’(f‘) s 
x (@+( t )  [e+(t’) 8 ~ ’ )  - W) @e+(t‘)] 
+ $-( t )  [e+(t‘) @ h(t‘) - h(r9 @ e+@‘)]}  6(x1 -x i )  
+f d f d t ‘ ~ ( f , f ’ ) ~ l ~ ( f ) - ’ ’ Z  ( t )  ‘ 
x { [ e + @ ) ,  e+( t ’ ) l@ (h(r) + W)) - (h ( t )  + W)) @ [e+@). e+@’)] 

- [e -@) ,  e-( t ’ ) l@ (h( t )  + W )  + (h ( t )  + W)) @ [e-(r), e-(t’)l 

+2K(t ,  t‘) [e+@) @ e+(t‘) - e+(t‘) @ e+@) 

1 

e-@) @ e-(t’) - e-(t’) e-(r)]) s(xI -xi). (14) 
Equation (14) can be rewritten as 

~AI(xI )@,  A~(xl))=b-,Ai(xl)@.l + l  @A~(xl)lS(xl - x i )  (15) 
where r is a 8 @ 8-valued constant, which may be called the ‘r-operator’, 

(16) (h arbitrary) 

indicates different (linearly independent) 

-e- (a) ( t ~ ,  . . . , t,) @ ef’(tt, . . . , tn))  + hC 

where e$)(tl ,  . . . , f n )  E G(b), the superscript 
elements of G(*”), which are assumed to be normalized such that 

(e&rl, . . . , tn) ,  eT (b) (t i ,  . . . , 1;)) = ~ ~ a ( t ~  - t i ) .  . . S(r, - r;)  
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and the summation over a is taken over all such elements. The constant C is the 'tensor 
Casimir operator' of the continuum Lie algebra G satisfying the conditions 

[C,d@ 1 t l@d]=O 
(C,d@l)=(C, l@A)=d VdcEE. 

Explicitly, we can write 

d td t 'Q-I ( t , t ' )h ( t )@h( t ' )  

(0) +e- 01, . . . , tn) 8 e t ) ( t l ,  . . . , 4,) )  I 

Of all the choices of A, two special values A = 
corresponding r-operators, 

are particularly important because the 

satisfy the cIassical Yang-Baxter equation 
12 23 32 13 [rL*, d31 + IrA ,Ti I + [r+ , r+ I = 0. 

The fundamental Poisson relation for T is then easily obtained by integrating the equation 

(18) 

T = A1 T, yielding 

IT(+l)@. Wdl = [r+, WI) @ W d l .  

5. Exchange algebra and dressing transformation 

Let us now proceed by analogy to the two-dimensional case. In what follows, we assume 
that the highest-weight representations for G exist, and the highest-weight vector lz) satisfies 
the equalities 

h(t)ls) = r(t)lr)  e+(t)ls) = 0 Vt 
(TIT) = 1. 

Note that the Lax pair (1) admits a gauge freedom T + gT with g E G, the underlying 
continuum Lie group. Using this gauge degree of freedom, we can transform the Lax 
connections A h  so that one of them takes the form A+ E GC* l~  @ GCi2) or A+ E @G(**). 
Then projecting the resulting transformed Lax pairs onto the states I T ) ,  Jdte-(t)(r) and 
their dual states, we can get two sets of 'chiral' vectors which means that they depend on 
only one space-time variable, ++ or x - .  

To be explicit, we have the chiral vectors, 
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with 

a*(: = 0 U = 1. 2. 

Following the standard method [E], we can show that these chiral vectors satisfy the 
exchange algebra [lo] 

{t:(x)a ~ Z ( Y ) )  = t:b+(x) 8 t:(y) (r+e(x - Y )  + r-e(y - x)) 

{C(X)B, t ~ b y ) ]  = - (tTb+(x) 8 1) r- (1 8 t;(~)) 
{t;(x)e, tZ(y)} = - (1 8 SFCY)) r+ (tJb+(+(x) 8 1) 

{t;(xm ~ F ( Y ) )  = ( r - e ( X  - Y )  +r+e(y -XI) e;bx) B c;(Y). 

(20) 

Let us now consider the dressing problem of the three-dimensional two-extended Toda 
model. As in the two-dimensional case, the dressing transformation depends essentially 
on the factorization of the underlying Lie group G, under which each group element g is 
factorized as 

g = g?g+ (21) 

T 4 Tg = O+Tg;' @I1@+ = 0 = TgT-'. (22) 

4 = R+d (ri, 1 8 A)z =+A=A+-A- (23) 

and the dressing transformation transforms the transport operator T as 

At present, the factorization problem is solved by the r-operators r* as follows, 

which is the infinitesimal form of the factorization problem. The fact that the positive and 
negative transformations of T give rise to the same Tg implies that the transformed Lax 
potentials A$ have the same form as that of the original A+. Recalling the concrete form 
(17) of the r*-operators, we can rewrite the O+ operators in  the following 2-graded form, 

O* = exp (@)) exp(e(*l)) . . . exp(@(*l)). . . (24) 

where Oca)  E Gcu), and the form-preserving condition for the Lax connections A* implies 
that the fields Q,, 'Y+ must transform as [lo]: 

08 = Q, +@io) Q, -8") - 

'Yf = 'Y* exp (&+ad@) 
e t )  +e?) = 0 

Note that each element e(") E G ( O )  can be written as S d t  e(0)(t)h(t), and each e(*') E @*I) 

can be written as J dt e(*I)(t)e+(t), so that we can rewrite the above dressing transformation 
laws in terms of the component fields, 

rps(x+, x - ,  t)  = r p ( ~ + , ~ - ,  t )  jr e:O)(X+, x - ,  t )  
&x+, X-, t) = @+(X+,X_, t )  T s1'*(t)e(T1)(x+,X-. t).  

It is particularly interesting to note that the chiral vectors E: transform only by a shift 
of constant group elements, 

In order that the above transformations preserve the form of the chiral exchange algebra 
(20). the constant group elements g+ must be subject to some non-trivial Poisson brackets, 

( e 3  = CJg? (e;Y =&?+e;. 

k+8, g+l = k*. g+ 8 g+l 
k-@,g-I= ki, g-@&I 
k+@, g-I = b+. g+ 8 g-I 
lg-@,g+} = [ r - ,  g- 8 g+l. 
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These structures. while considered in the framework of two-dimensional Toda-type theories, 
correspond to the semiclassical limit of the quantum (KaoMoody) group [16]. Therefore, 
it might be interesting to see whether the above structure can give rise to any structure like 
a 'quantum continuum Lie group' after quantization. We leave this problem open for later 
considerations. 

6. Formal solutions via LeznovSaveliev analysis 1171 

As in the two-dimensional case, the chiral vectors t: are also useful for constructing formal 
solutions of the two-extended Toda system (4),(5). Recalling the definitions of these chiral 
vectors, we have 

(rl exp(@)lr) = ::(x+)t;(x-) 

(TI  exp(Q)exp(*-) dte-(OlT) = f:(x+)f;(x-) 

[ / W r l e + ( r ) l  exp(*+)exp(@)lr) = .$(+cx+)t;(x-). 

exp/dtyl(x+,x-. t )r( f )  = ::(x+)<;(x-) 

IS I 
In terms of the component fields, the above equations read 

Let us consider the above relations in more detail and show how we can obtain formal 

Define TLIR = exp(&$@)T and decompose them as 
solutions from these relations. 

TL = eK+N-M+ TR = e"N+M- 

where K* E GO, N*, M i  E G i ,  we can get from equation (19) that 

f ; ( x + )  = (rleK+M+ 

which shows that K i  and M* are chiral objects, 

f ; ( x - )  = M:'e-K-lr) 

a + ~ ,  = a,M, = 0. 

Furthermore, writing N+ = exp(X(*'))exp(,y(iz)). . . as we did in equation (24). we obtain 
[ 101 

t z ( x + ) =  [/dt(r[e+(t))e'* [ I  +e-sdK+P+]M+ 
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More detailed calculations [IO] show that the operators M+ are not independent of K+ and 
p*, 

ldr(rle+(t)eK+[l + e~p(-adK+)P+]M+M~'e-~-  Is) 

(sleK+M+MI'e-K- Ir) 
Jdt @+(x+,x-, t)s(t) = 

Thus, provided we know enough about the highest-weight representations of the underlying 
continuum Lie algebra S, we may be able to obtain the solution of the system (4).(5) using 
the above relations. 

7. Concluding remarks 

In this article, we have studied the three-dimensional two-extended Toda model by 
generalizing various techniques for treating two-dimensional models. The models studied 
here are usually integro-differential equations; there is, however, one special case, say, 
equations (7). which is a complete system of diferential equations. Actually, this system is 
just the (Bz, Cz) flow of the so-called semiclassical or continuous Toda hierarchy proposed 
recently by Takasaki and Takebe 1181. The (B1, C1) flow of this hierarchy is the well 
known 'continuous Toda' model, which possesses the wm symmetry and corresponds to 
real Euclidean Einstein spaces with at least one rotational Killing vector [5]. Therefore, it 
is of utmost interest to ask whether equations (7) correspond to any similar structure. If 
this is true, then it might also be interesting to clarify the roles of a more general system 
(5) in the gravitational theories. 

Although we have given some hint of deriving formal solutions to the system (4), (3, 
we have to say that such constructions are really formal, since we do not have enough 
knowledge about the highest-weight representations of the continuum Lie algebras to 
determine whether our construction can really give rise to explicit, physically non-trivial 
and interesting solutions. Thus is seems necessary to continue the study of the structures 
and representations of the continuum Lie algebras themselves. 
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